If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24x^2-200x-400=0
a = 24; b = -200; c = -400;
Δ = b2-4ac
Δ = -2002-4·24·(-400)
Δ = 78400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{78400}=280$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-200)-280}{2*24}=\frac{-80}{48} =-1+2/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-200)+280}{2*24}=\frac{480}{48} =10 $
| (x+2)(x+2)-(x-2)(x-2)=(1x)(1x)-(x-5)(x-5)+5 | | 11=√2x+1 | | 3x+5=7(x-1) | | -5=7+2u | | M3-4m2+2m=-12 | | 11=√2x=1 | | (x+2)(x+2)-(x-2)(x-2)=(x)(x)-(x-5)(x-5)+5 | | 5x+2x-3=20 | | 270=3000*x*1.5 | | (x+15)=(x+5) | | x^-0.6=5 | | 0=a(160-80)2^+70 | | 3.2-40=2.3d+3 | | F(x)=3x^-2x+5 | | 5y-14=45 | | 6x+x3=12-12x | | 2(-1-6p)=-29-3p | | 4v-10=7(1+3v) | | 9-3v=4-(3v-5) | | 7x-7+4+4x+51=180 | | -3(1+4x)=-38-7x | | -(8m+8)=40-2m | | .3(12-24n)=-2(4n-2) | | (7y+8)-(5+6y)=11 | | (n-2)*180=1980 | | 1/3(12-24n)=-2(4n-2) | | 8x+9-6(x+1)=7x+5 | | 2(1-3n)=18+2n | | .3x+15.8=x-8.14 | | 3(d-8)=11d-18(d-3) | | m/7=5/3 | | -5(7+8b)+8=-27-6b |